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Introduction

Renal tract malformations (RTMs) (i.e. those affecting the kidneys and/or lower urinary tract) represent
deviations from normal development. They are common, for example being diagnosed by antenatal
ultrasonography in 0.16% births, representing one tenth of all anomalies diagnosed in this manner.! Normal
development is a carefully choreographed process, the instructions for which are contained in an individual's
genes. Humans have approximately 30,000 pairs of genes packaged on 23 pairs of chromosomes (22 autosomes
and one sex chromosome pair); additionally, each person has 37 genes within mitochondria. When a gene is
'expressed' it provides instructions to produce a particular protein or, in some cases, a functional RNA molecule.
Renal tract development is characterised by changing patterns of expression of many hundreds of genes, from
the inception of the kidney,? ureter® and bladder,* through the growth of these rudiments into functional, mature
organs. Indeed, in the last two decades it has been established that human RTMs can be caused by mutation of
many genes.> ¢ Such knowledge is beginning to impact on clinical practice, giving families of affected
individuals reasons why these sometimes clinically-devastating anomalies arose.> Many of the genes essential
for renal tract development also operate in other organ systems, proving one explanation why one third of RTMs
are 'syndromic', occurring in association with specific patterns of extra-renal malformations." ¢ In this chapter, to
introduce readers to this relatively new field of the genetics of human RTMs, we discuss some general genetic
concepts as well as mentioning specific diseases.

Mendelian Inheritance

Some mutations are inherited from one or both of an individual's parents, explaining why genetic diseases can
recur in any one family (Fig. 1). This is called 'Mendelian inheritance' after Gregor Mendel, the 19th century
Austrian monk who studied inheritance patterns of pea plant characteristics. In routine clinical practice, many
RTMs are seemingly sporadic or affect more than one individual within a family in a complex (non-Mendelian)
pattern, making it difficult to discern a precise genetic contribution. Having said this, some RTMs are inherited
in a Mendelian manner and Table 1 lists a selection of them. Familial genetic 'linkage' analysis is a powerful
technique for identifying genomic regions associated with a condition in affected family members. It has led to
the discovery of many RTM genes and continues to be an important technique in genetic research. For some
syndromes featuring RTMs, mutations in more than one gene can cause an identical clinical disease or
'phenotype’. Such syndromes include Alagille, branchio-oto-renal and Fraser syndromes (Table 1). In these
cases, the gene products either have a related function or form critical components of a common biological
pathway operating during organogenesis.

Autosomal Recessive Disease

A disease is 'autosomal recessive' (AR) when mutations in both copies, or 'alleles', of a gene (i.e. one on each of
a chromosome pair) are required to cause disease (Fig. 1, left-hand panels). Some AR disorders associated with
RTMs are listed in Table 1. These mutations are usually inherited from carrier, or 'heterozygous', parents who
have one normal copy and one mutated copy of the gene, with a 1 in 4 risk of recurrence of the disease in a
future child. AR mutations usually cause a 'loss of function' of the gene such that an affected individual has an
absent or very low level of the molecule normally encoded by the gene. Carriers are usually well because having
just one functional gene copy is sufficient to maintain healthy cells. Although the genome of each mormal'
human carries numerous loss-of-function mutations in different genes, each AR disease is rare because of the
low probability that two individuals, each carrying a mutation for a particular gene, will meet and procreate. On
the other hand, AR diseases are commoner in consanguineous relationships where both parents may carry a
mutation inherited from a common ancestor.

During the initiation of the embryonic metanephric kidney, the ureteric bud, a branch from the distal end of the
Wolffian (mesonephric) duct, grows into adjacent intermediate mesoderm and these two tissues interact,
respectively ultimately forming ureteric/collecting duct epithelia and kidney nephrons. The FRAS gene family
code for basement membrane proteins which coat the external surface of the ureteric bud and they are required



for tissue inductions.” Mutations of these genes lead to renal and ureteric agenesis in the often fatal Fraser
syndrome, an AR disorder which also features hidden eyes ('cryptophthalmos'), soft tissue fusion of fingers and
toes ('syndactyly’), laryngeal anomalies and ambiguous genitalia.® Of note, the addition of nephrogenic growth

factors rescues renal agenesis in an animal model of the human syndrome.’
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Fig. 1. Summary of characteristics of the three main types of Mendelian inheritance.

Key to Fig. 1. 'Penetrance' refers to the observation that the proportion of those affected by the clinical disorder is less than 100% of
expected based on whether individuals carry a the mutation. 'Variability of expression' refers to the observation that affected individuals
have a spectrum of disease severity. With respect to RTMs, modifying genes and yet-to-be defined alterations of fetal environment may
contribute to the variability in the occurrence and/or severity of the genetic disease.

The uro-facial, or Ochoa, syndrome is a good example of an AR disease which affects the bladder.® Here,
although the bladder begins to form, affected individuals suffer from congenital bladder dysfunction
characterised by failure of complete voiding accompanied by upper tract dilatation. A diagnostic clue, evident in
the clinic, is that such individuals have a characteristic grimace when smiling. Some individuals with the
syndrome have been found to have mutations of a gene called HPSE2 which codes for heparanase.? This
molecule is predicted to modify growth factor signalling and/or cell adhesion during development and must
somehow facilitate detrusor maturation and/or contraction. The gene is expressed in bladder muscle as well as in
the central nervous system.!® Bladders in the uro-facial syndrome share some biological similarities with those
found in the prune belly syndrome e.g. failure to empty and abnormal walls with diverticula. Prune belly
syndrome can also be inherited in an AR manner'! and, it can be caused by mutation of the CHRM3 gene which
encodes the M3 acetylcholine receptor which is required for detrusor contraction.

Autosomal Dominant Disease

'Autosomal dominant' (AD) diseases arise when a mutation in only one of a gene pair is sufficient to cause
biological dysfunction. Some AD syndromes associated with RTMs are listed in Table 1. AD conditions can be
inherited from an affected parent, with a 1 in 2 risk of recurrence in future children (Fig. 1, central panels). It is
often observed that, in AD disorders, a parent carrying the mutation may be clinically unaffected or have only a
mild version of the disease,' situations respectively called 'non-penetrance’ and 'variable expressivity'. Both
phenomena may be explained by: 1. the modifying actions of poorly-recognised environmental factors affecting
the fetus, such as variations in maternal protein and vitamin intake;'® 2. the presence in the individuals of
variants of other genes which affect renal tract development. As an example of the latter, Weber et al'* showed
that the severity of RTMs within a family with mutation of the PAX2 (Paired box-2) gene was increased by the
presence of a variant in another gene, SIX1. A common feature of AD disease is the discovery that a mutation is
apparently new (‘de novo') in the affected child, likely having occurred during production of the egg or sperm.
Alternatively, a clinically unaffected parent could be a genetic 'mosaic', carrying a de novo mutation which



arose after the start of his or her own development, resulting in colonies of cells either having or lacking the
mutation. If such abnormal colonies give rise to the germ cells, the mutation could be recurrently passed on so

that all of an offspring's cells carry the genetic lesion. '
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Within cohorts affected by apparently non-syndromic RTMs, a proportion are caused by AD mutations. In
groups of individuals with renal hypoplasia or dysplasia, up to 20% have been found to have mutations in PAX2
or HNF1B (Hepatocyte nuclear factor 1B).!4!%17 Both genes are prominently expressed in the ureteric
bud/collecting duct lineage and code for transcription factors, proteins which bind to DNA and regulate the
activity of numerous target genes. A key function of the PAX2 protein is to prevent excess apoptotic death of
precursor cells in the metanephros, and thus PAX2 mutations usually cause renal hypoplasia i.e. small kidneys
with a severe nephron deficit. The HNF 1B protein stimulates epithelia to differentiate and prevents uncontrolled
proliferation and cyst formation. Thus the multicystic dysplastic kidney is a common RTM associated with
HNF1B mutation. As noted in Table 1, mutations of both genes can result in extra-renal disease (diabetes
mellitus with HNF1B mutation and blindness with PAX2 mutation); importantly, however, these features are
often absent in the patients presenting to Urologists and Nephrology clinics. The proportion of RTMs attributed
to Mendelian mutations is likely to increase dues to wider availability of genetic testing and the continuing
discovery of new genes associated with RTMs.

X-linked Inheritance

Conditions caused by mutations in genes on the X chromosome are 'X-linked' and some such syndromes
associated with RTMs are listed in Table 1. Females (XX) have two copies of an X-linked gene whilst males
(XY) have only one (Figure 1, right-hand panels). This means a male with an X-linked mutation will be
affected. Females carrying an X-linked condition have one mutated and one normal copy of the gene. Some X-
linked mutations are recessive, only causing disease in males, while others are dominant and affect both males
and females who carry one mutated allele. One copy of the X chromosome in each of a female's cells has
undergone random inactivation in early embryogenesis, a process called 'lyonization' after the geneticist Mary
Lyon who first proposed the phenomenon. This means that females carrying a mutation of a gene on one X
chromosome are in fact mosaics for different proportions of cells expressing the normal or the mutated gene.
This idea helps to explain why such females may be less, or more, affected by the associated genetic disease.

An example of an X-linked recessive disorder featuring RTMs is provided by the X-linked form of Kallmann
syndrome. As in Fraser syndrome, discussed above, the mutated gene normally codes for a protein which coats
the surfaces of embryonic kidney epithelial cells. When the protein is absent, renal agenesis is the result, usually
manifest as a solitary functioning kidney."® Other features of the syndrome are hypogonodotrophic
hypogonadism (manifest by failure to proceed through puberty) and anosmia (absent sense of smell) and both
are explained by the fact that the gene is also expressed in the forebrain both in nerves generating hypothalamic
hormones as well as in olfactory neurones. "



TABLE 2.

Gross Chromosomal Abnormalities Associated with RTMs
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"CHD = congenital heart disease; EK = ectopic kidney; HK = hypoplastic kidney; HYD = hydronephrosis; OMIM = Online Mendelian
Inheritance in Man; PUJO = pelviureteric junction obstruction; RA = renal agenesis; RD = renal dysplasia; VUR = vesicoureteric reflux;
MR = mental retardation "

Chromosomal Abnormalities and RTMs

RTMs occur in around one third of individuals with gross chromosomal abnormalities (deletions, duplications
or rearrangements), with some commoner examples listed in Table 2. In each of these cases, the structure and
thus function of numerous genes may be compromised. At least for multicystic dysplastic kidneys, such gross
genetic lesions are more likely to be found when the RTM is bilateral and when extra-renal anomalies are
present.’ Because the biological effects of gross chromosomal abnormalities can be devastating, they often
appear as de novo events, absent in parents of affected individuals. Such new mutations may be generated
during the production of the egg or sperm which then goes on to make an individual, or at the very start of
embryonic development, so that all cells in the body carry the mutation. Detailed analysis of chromosomal copy
number variation (CNV) undetectable by classical cytogenetic techniques is now possible by array comparative
genomic hybridisation or simply 'microarray’. Using this technique: CHD7 (Chromodomain-helicase-DNA-
binding protein 7) was implicated in CHARGE (coloboma, heart anomaly, choanal atresia, retardation, genital
and ear) syndrome;?' a recurrent microdeletion on the long arm of chromosome 17 including HNF1B was found
to be associated with features of RCAD (renal cysts and diabetes) syndrome with neurocognitive disability;?
and 22q11 duplications were associated with bladder exstrophy.?

Genetic Complexity and Human RTMs

Non-syndromic primary VUR is a common condition, affecting at least 0.5-1% of young children. The
incidence of reflux is increased in first degree relatives and families are commonly seen with two or more
affected siblings.? Frustratingly, we lack precise genetic explanations for the great majority of individuals with
this condition. Most likely, whether or not an individual is born with primary VUR will be determined by more
than one genetic mechanism. For some families, the disorder is Mendelian,” and will be caused by mutation of
any one of the many genes which drive ureteric growth. As is evident from Table 1, VUR has been reported in
many syndromes, suggesting that it can result from mutation of any one of numerous genes active in renal tract
development. Indeed, rare individuals with VUR who lack extra-renal anomalies have been reported with



mutations of genes which direct the initiation and differentiation of the ureter.2%?’ Perhaps the proportion of
VUR attributed to Mendelian mutations will increase due to the continuing discovery of new genes associated
with RTMs combined with 'next generation' genetic technologies which rapidly sequence coding regions from
an individual's whole genome. In other individuals, VUR may be the result of the interaction of minor
variations, or 'polymorphisms', of several genes coding for molecules which act in common or interacting
pathways. Using groups of several hundred of affected individuals, attempts are being made using 'GWAS'
(genome-wide association studies) to address this issue but, thus far, results have been disappointing.?® Probably,
much larger collections of patients will be need to be analysed to generate results with the statistical power to
implicate specific gene variants, as has been accomplished with other kidney disorders.?
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